

INNOVATION CONFIGURATION

Applied Learning — STEM and Computer Science

2021 - 2025

Chief: Saemone Hollingsworth, Office of Academics

Director: Susan Cantrick, Applied Learning Department

Contact(s): Dr. Lisa Milenkovic, Supervisor, STEM+CS

Course Group Number: 39001252

Purpose

The Applied Learning Department offers professional learning activities around diverse initiatives that are intended to engage students and help them make connections between what they learn in school and how that knowledge is used for real purposes, both in school and out of school. With the founding principle that student engagement in learning is essential to academic success, these initiatives are designed to inspire students, raise their level of interest, commitment, and motivation toward success in and out of school. Applied learning activities and projects may be planned by teachers or arise naturally from student interests; they may be closely aligned with the standards of one domain or course, or may incorporate skills and knowledge that cut across several courses. Projects may involve a whole class, small group, or individual learners; they may take only a few hours or may extend to long-term projects. They may also incorporate cooperation and competition, as appropriate to learner needs. What all applied learning initiatives have in common is that they involve students working to develop skills and create solutions that addresses real-world needs, going beyond grades and standardized tests to experience the sense of relevance and purpose. STEM is the application of science, technology, engineering, and mathematics into an inquiry-based interdisciplinary approach to learning. In STEM classrooms, students use critical thinking skills and creativity to solve problems and generate new ideas and can be part of Science courses, Math courses, Computer Science, many Career and Technical Education courses, and many other curricular areas.

Within the Applied Learning Department, the Innovation Configuration for STEM and Computer Science reinforces transdisciplinary application of science, technology, engineering and mathematics with explicit attention towards Computer Science. The synergy between STEM and Computer Science is addressed in multiple programs and local, regional, national and international competitions available to preK – grade 12 students. STEM+CS programs include the SECME STEM Olympiad, Environmental Stewardship, Edible Schoolyard Gardening, Applied STEM through Problem-Based Learning, and Computer Science including coding, robotics, and other physical computing. Our programs reach beyond the classroom and the school day to involve the entire community in the application of learning across all disciplines to solve the problems of today and create the innovators ready to solve the problems of tomorrow.

Needs Assessment

The Applied Learning Department was established in response to a steady decline in student engagement, informed by year-on-year results of the Customer Survey, and a steady graduation rate. The BCPS Customer Survey will be administered March 1, 2022 - April 29, 2022. These surveys ask stakeholders their opinions about their school, including their teachers, administrators, peers, and other aspects of their experiences at school. Seventy nine percent (79%) of parents reported they clear learning expectations are set for my child and 78% of parents felt their child has been prepared for the next school year. More than 80 percent (83%) of teachers reported their lessons provide opportunities for students to be actively engaged in their learning and 95% of students at elementary (3-5) felt teachers want every student to learn. However, only 55% of middle and high school reported feeling their teachers effectively engage students in the classroom. There was a noted decline in positive responses as the grade level increased.

The Florida Department of Education (FDOE) consider English Language Arts (ELA), Mathematics, Science, and Social Studies as the four achievement components.

Source: FDOE 2022. Assessment Map.

Notes: Spring K-12 statewide assessment test administrations for the 2019-20 school year (SY) were canceled and accountability measures reliant on such data were not calculated for the 2019-20 SY

OBJ

Graduation rates over the past six years have declined and recovered, with a rate of 81% in 2016-17 to an increased rate of 89% in school year 2020-21. The state graduation rates have been consistently higher then BCPS over the past three years. The figure below shows a comparison off graduation rates between Florida State and BCPS. The target of Applied Learning is to continue to improve the graduation rate in alignment with the overall BCPS District's Strategic Plan goals.

OBJ

More than 75 percent of Broward Schools provide students the opportunity to participate in the K-12 computer science pathway. A result of professional development efforts at the elementary level, and the agreement with Code.org for PD at secondary levels, there has been a sharp increase in year-round computer science learning opportunities in Kindergarten through twelfth grade. This graph represents the number of elementary, middle and high schools that offered computer science curriculum and courses over the past three years. At the elementary level, the District has provided professional development for primary and intermediate teachers to integrate 18 hours of computer science into the curriculum, in which 80 elementary schools participated last year and 113 participated this year. At the middle school level, Code.org has allowed the integration of computer science into algebra and science classes, bringing the number of middle schools that offered at least 40 hours of CS to 22 last year and 34 this year. In 2013-14, only nine high schools offered computer science. This rose sharply with the introduction of professional development for secondary teachers and administrators through Code.org, to 18 high schools last year and

Office of Academics | Department of Professional Development Standards & Support Copyright © 2018 Broward County Public Schools. **Updated 2023**

all 33 high schools this year. These numbers reflect schools that provide curriculum and classes in computer science specifically, not just digital tools or industry certifications.

By 2017, the integration of computer science had reached over 27,000 elementary school students, and over 8,000 middle schoolers. The number of high school students participating in rigorous computer science classes had also risen sharply, from 240 students two years ago to almost 3,000 students.

The District' aims to implement integrated computer science curriculum and/or formal computer science courses at all Broward Schools to provide all students the opportunity to access the K–12 computer science academic pathway.

The tables on the following pages describe the Desired Outcomes for professional learning in support of each role associated with this Innovation Configuration.

Desired Outcomes and Performance Indicators

1.0 STEM and Computer Science Teachers

1.1 Computational Thinking, and Knowledge of Problem Solving and Algorithms. Desired Outcome: Enable students to better conceptualize, analyze, and solve problems by selecting and applying appropriate strategies and tools both in the virtual and physical world.

Performance Indicators			
Level 4	Level 3	Level 2	Level 1
Use strategies to enable	Provide scaffolding and	Explain (we do)	Model (I do) processes
student computational	practice opportunities to	processes necessary to	necessary to solve a
thinking used across all	enable students (you do)	solve a problem.	problem.
disciplines to solve	to master computational		
problems.	thinking used.	Provide an environment	Identify stages of
		for students to discuss	software development
Provide an environment	Provide an environment	and solve problems in the	process (problem
where students create	for students to discuss	physical world.	definition, analysis,
new knowledge, tools,	and solve problems in the		design, implementation,
and processes.	virtual as well as the	Distinguish between	testing, maintenance).
	physical world.	object-oriented and	
Promote student		procedural programming	Identify appropriate
reflection and	Collaborate with	paradigms.	algorithm for given
understanding of the	colleagues face-to-face		problem.
power and limitations of	and virtually to promote	Identify problems	
computing in the modern	knowledge construction	appropriate for a	Identify minimum set of
age.		computer solution.	data necessary for testing
	Trace an algorithm and		a computer solution.
Provide situations for	predict outputs for given	Distinguish between	
students to solve	output.	instance, class and local	Identify key features of
problems by selecting and		method variables in an	object-oriented programs.
applying appropriate	Identify appropriate and	object-oriented program.	
strategies and tools,	efficient search		
virtually and in the real	algorithms for linear		
world.	structures (sequential,		
D	binary).		
Distinguish between			
classes of algorithmic			
constructs (sequence,			
decision, iteration), and			
between data structure			
types.			

1.2 Collaboration. Desired Outcome: Provide opportunities for students to work cooperatively with fellow students, using appropriate technology.

, 61	L 1		
Performance Indicators			
Level 4 Level 3 Level 2 Level 1			

Teacher provides Teacher provides an Enhance collaborative Teachers provide environment for environment for students abilities by participating opportunities for students students to use online to use online resources in teams to solve to gather information and resources and and participate in problems relevant to daily communicate with others participate in collaborative problemlives. Teacher provides using a variety of collaborative problemvenues and processes for solving activities with devices. solving activities peers. Organizes physical student team experts as well as peer classroom layout to focus communication. groups globally. on learning. Teacher Organizes students to Teacher provides provides instruction and collaborate. multimedia and models for students to productivity tools for develop constructive group learning criticism on peer work. exercises. Teacher promotes student project planning and project management.

1.3 Computing Practice, Programming, and Pedagogy. Desired Outcome: Use computational tools and have knowledge of computer programming.

Performance Indicators			
Level 4	Level 3	Level 2	Level 1
Explore the use of	Use appropriate	Use appropriate Software	Understand broad array
programming in solving	application program	tools and libraries to help	of opportunities
problems Select	interfaces (APIs) Debug a	solve algorithmic and	computer science knowledge can provide
appropriate file and	program segment	computational problems	across fields and
database formats for a	containing errors	Predict the output of a	disciplines.
particular computational	associated with	given program containing	
problem Identify	subroutines, functions,	sequential, conditional	Identify error types.
strengths and weaknesses	methods and interacting	and iteration statements.	
of object-oriented and	objects. Use appropriate	Use effective	Identify appropriate
procedural languages.	instructional strategies for	management strategies	internal documentation
Identify and apply	teaching computer	for teaching computer	for a group of program
appropriate	science. Use appropriate	science.	statements.
accommodations and	assessment strategies for		
adaptations for students	teaching computer		
with exceptionalities.	science.		

1.4 Computer and Communications Devices. Desired Outcome: Understand the elements of modern computer and communication devices and networks.

Performance Indicators			
Level 4	Level 3	Level 2	Level 1
Provide an environment that facilitates global communication and how to practice good global internet citizenship.	Demonstrate and models how to practice good global internet citizenship	Identify advantages and disadvantages of various storage media.	Use appropriate and accurate terminology when communicating about technology.

Distinguish between serial and data transfers. Identify advantages and disadvantages of programs that are compiled or interpreted.	Explain the features and functions of productivity software. Explain why a computer translates software into a machine-executable form.	Distinguish between various types of wired and wireless computer networks. Identify advantages and disadvantages of different types of internet connectivity.	Identify components of a computer and network systems and their functions. Identify functions of a computer system. Identify features and functions of web browsers and search engines.
1.5 Community, Global,	and Ethical Impacts. Desir		norms of ethical use.
	Performanc	e Indicators	
Level 4	Level 3	Level 2	Level 1
Include respect for copyright, intellectual property, and the appropriate	Teach safe, legal, and ethical use of digital information and technology.	Advocate and model, safe, legal, and ethical use of digital information and technology.	Demonstrate between appropriate and inappropriate social networking behaviors.
documentation of sources			
Promote and model digital etiquette and responsible social interactions related to the use of technology and information. Develop and model cultural understanding	Implement and evaluate learner-centered strategies to determine if all learners are receiving equitable access to digital tools and resources. Create new content on digital etiquette and responsible social interactions related to the	Develop learner-centered strategies to address the diverse needs of all learners. Adapt instruction on social responsibility to incorporate digital tools and resources including network security and software licensing.	Advocate personal privacy, safe, legal, and ethical use of digital information and technology. Identify students' interests, backgrounds, and use of and access to digital tools and resources.
and global awareness by engaging with colleagues and students of other cultures using digital age communication and collaboration tools. Provide opportunities for students to explain the impact of computers on international communication.	use of technology and information. Provide opportunities for students to evaluate reliability and accuracy of information they receive from the Internet.	Appreciate adaptive technologies in lives of people with disabilities. Explain the positive and negative effects of computers on society.	Transfer instruction on social responsibility to the digital environment. Identify features and functions of security software.

1.6 Integrated STEM and Computer Science. Desired Outcome: Interrelate and interpret important concepts, ideas, and applications and use inquiry to develop STEM and Computer Science knowledge for all students beyond memorization.

Performance Indicators			
Level 4	Level 3	Level 2	Level 1
Explain state adopted	Explain state adopted	Identify state adopted	Demonstrate between
curriculum standards	curriculum standards	curriculum standards	appropriate and
clearly and accurately	clearly and accurately.	accurately.	inappropriate social
with the appropriate level			networking behaviors.
of complexity and	Demonstrate (i.e. posttest,	Demonstrate (i.e. posttest,	6
incorporates research-	lesson plans,	lesson plans,	Advocate personal
based resources.	observations) application-	observations) surface-	privacy, safe, legal, and
	level knowledge of major	level knowledge of major	ethical use of digital
Monitor student progress.	scientific concepts,	scientific concepts,	information and
	principles, theories, and	principles, theories, and	technology.
Monitor the extent to	laws.	laws.	· · · · · · · · · · · · · · · · · · ·
which knowledge is	14.7.5.	14000	Identify students'
enhanced and design	Organize students to	Identify critical	interests, backgrounds,
lessons that impact the	interact with new	information for	and use of and access to
student beyond the	knowledge.	conceptual	digital tools and
classroom.	Kilo Wiedge.	understanding.	resources.
Ciassicom.	Design lessons that apply	understanding.	resources.
	and enhance knowledge	Provide opportunities for	Transfer instruction on
	and impact the student	knowledge to impact the	social responsibility to
	beyond the classroom.	student beyond the	the digital environment.
	beyond the classroom.	classroom	the digital environment.
		Classicom	Identify features and
			functions of security
			software.
1.7 Student Engagement	Desired Outcome: Design	l n and select learning activi	
00	ncluding technology) to en	Č	
	Performanc		1
Level 4	Level 3	Level 2	Level 1
Chunk content and adapt	Chunk content and adapt	Select an appropriate	Select an inappropriate
strategies to address	strategies to address	strategy but use strategy	strategy that does not
unique student needs and	needs and situations of	incorrectly or with	address learning goal.
classroom situations.	the class.	missing parts to address	
		learning goal.	
Monitor the progress and	Provide clearly stated		
effectiveness of selected	learning goals on a scale		
activities on student	or rubric that describes		
learning.	performance levels.		
Organize physical	Organize physical		
classroom layout to focus	classroom layout to		
on learning. Engages	facilitate movement.		
students in activities that			
link prior knowledge to	Engage students in		
facilitate connections to	activities that link prior		
	prior		

	T	1	T
the real world and in	knowledge to new		
summarizing, predicting,	content and in		
and questioning activities.	summarizing, predicting,		
	and questioning activities.		
1.8 Safe and Ethical Prac	tices. Desired Outcome: D	Demonstrate and maintain s	safety procedures and
ethics as appropriate to the	ne STEM and Computer S	cience environment.	
	Performanc	e Indicators	
Level 4	Level 3	Level 2	Level 1
Implement and document	Identify, instruct and	Identify and familiarize	Not aware of
a safety program to	assess students to ensure	students with	recommended safety
ensure adherence to	adherence to	recommended safety	practices and procedures.
recommended safety	recommended safety	practices and procedures.	
practices and procedures.	practices and procedures.		No training on safety
		Complete basic	policies and procedures
Create, instructs and	Create and make	informational training in	within the past five years.
monitor implementation	available emergency	safety policies and	
of the classroom	plans to students,	procedures within the	No emergency plan
emergency plan.	substitute teachers, and	past 5 years.	exists.
	administration.		
		Create classroom	
		emergency plan.	

Data Collection Plan: STEM and Computer Science Teachers			
Level of Measurement	Instrument/Data Type	Frequency	Responsible for Collecting Data
1. Participants' Reactions	Workshop Attendance and Surveys	1x/workshop	
2. Participants' Learning	Embedded assessments Knowledge as evidenced by K–12 Computer Science Certification Exam	1x/workshop	
3. Organizational Supports	Communication with Principals Half-day Workshop w/APs, Counselors MS and HS Course Selection Cards STEM & CS Community Meetups	Ongoing 1x/year 1x/year 4x/year	
4. Participants' Practice	STEM & CS Teacher Survey Technology Integration Matrix Code.org User Activity Benchmarks	1x/year 1x/year 1x/year	
5. Student Outcomes	Enrollment, demographics, and grades FSA Mathematics, Gr. 3 – 10 Statewide Science Assessment Gr. 5, 8 AP CSP, CS-A Exams and Pass Rate		

Evaluation Plan

Level 1. Participant Reactions				
Audience	Mid-Year Evaluation	End-of-Year Evaluation		
STEM and Computer Science Teachers	Workshop Attendance and Surveys	Summary of PD Mgmt. System Data		
	Level 2. Participant Learni	ing		
Audience	Mid-Year Evaluation	End-of-Year Evaluation		
STEM and Computer Science Teachers	Embedded assessments Knowledge as evidenced by K–12 Computer Science Certification Exam	Total number of new teachers certified in K–12 Computer Science		
	Level 3. Organizational Sup	port		
Audience	Mid-Year Evaluation	End-of-Year Evaluation		
STEM and Computer Science Teachers	Communication with Principals Half-day Workshop w/APs, Counselors MS and HS Course Selection Cards STEM & CS Community Meetups	Number of elementary, middle and high schools actually offering computer science as evidenced by District records and course selection card listing		
Lev	Level 4. Participants' Use of New Knowledge and Skills			
Audience	Mid-Year Evaluation	End-of-Year Evaluation		
STEM and Computer Science Teachers	STEM & CS Teacher Survey Technology Integration Matrix Code.org User Activity Benchmarks	Summary of survey and observation data		
Level 5. Student Learning Outcomes				
Level of Impact	Mid-Year Evaluation	End-of-Year Evaluation		
STEM and Computer Science Teachers	Monitoring of student enrollment, demographics, and grades	FSA Mathematics, Gr. 3 – 10 Statewide Science Assessment Gr. 5, 8 AP CSP, CS-A Exams and Pass Rate		